If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+80y+1120=0
a = 1; b = 80; c = +1120;
Δ = b2-4ac
Δ = 802-4·1·1120
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{30}}{2*1}=\frac{-80-8\sqrt{30}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{30}}{2*1}=\frac{-80+8\sqrt{30}}{2} $
| 2x+12x-4=24 | | b/3+5=3/2b+1/3 | | 7(1+y)=3(y+5) | | 24+6w=36 | | 2x-34=10 | | 10p−3=2(12+4p)−7p=p= | | F(x)=650-8x | | 2n^2+4n^2=4n | | 180=2x-2+x+5 | | 15x+10x+20x+5x=360 | | -14x-19=-145 | | 17m=8(m+1) | | n+5=152 | | -4/3x+2=14-1/3x | | X-4y=42 | | 6x^2-8x6=0 | | 4u+1=0 | | 5x-29=(-60) | | $71.00+x=$75.60 | | z+1=92 | | -2(a-2)+1=28 | | 3/x+12-4/x-12=3x/x2-144 | | X+55000=50x/100 | | 8.25n=-90.75 | | 5(x-5)-1=-5(-4x+2)-3x | | 4(p-8)+13=5 | | 4(p–8)+13=5 | | -55=-7b+2b | | X+97+x+97+45=180 | | 12+4r=40 | | -6x+6=x+6 | | 6x+8+6x+8+44=180 |